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A fixed time step method is developed for integrating stochastic differential equations �SDE’s� with Poisson
white noise �PWN� and Lévy white noise �LWN�. The method for integrating SDE’s with PWN has the same
structure as that proposed by Kim et al. �Phys. Rev. E 76, 011109 �2007��, but is established by using different
arguments. The integration of SDE’s with LWN is based on a representation of Lévy processes by sums of
scaled Brownian motions and compound Poisson processes. It is shown that the numerical solutions of SDE’s
with PWN and LWN converge weakly to the exact solutions of these equations, so that they can be used to
estimate not only marginal properties but also distributions of functionals of the exact solutions. Numerical
examples are used to demonstrate the applications and the accuracy of the proposed integration algorithms.
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I. INTRODUCTION

Stochastic differential equations �SDE’s� are used exten-
sively in applied sciences and engineering to describe the
behavior of physical, biological, engineering, and other sys-
tems. For example, noise-induced transitions in physics,
chemistry, and biology can be captured by changes in the
probability law of the solutions of SDE’s with Gaussian
white noise �GWN� ��1�, Chapter 7, �2��, stability of dynamic
systems in Gaussian random environment can be inferred
from Lyapunov exponents calculated for solutions of SDE’s
with multiplicative GWN ��2�, Sec. 8.7�, and predictions of a
system state can be improved by accounting for observations
of its state via filtering theory for SDE’s with GWN �3,4�.

The solutions of SDE’s with GWN are continuous sto-
chastic processes so that they cannot be used to describe
phenomena exhibiting jumps of random magnitude occurring
at random times. For example, earth temperature X is
strongly correlated with calcium concentration whose
records over 80 000 years exhibit large jumps corresponding
to the interstadial and the full glacial states �5�. It has been
proposed to model earth temperature X by a stochastic pro-
cess satisfying a stochastic differential equation driven by
GWN and Lévy white noise �LWN�. The drift coefficient of
this equation corresponds to a potential with two wells asso-
ciated with the interstadial and the full glacial states. The
jumps of X between potential wells is facilitated by the Lévy
white noise that has been scaled such that the typical resi-
dence of X in a potential well is between 1000 and 2000
years �5�. Similar models have been used to characterize sea
surface temperature T�t� in the Southern Pacific. For ex-
ample, T�t� has been described by the first coordinate of a
two-dimensional diffusion process with nonlinear drift
driven by GWN whose second coordinate is the physically
active surface layer of the ocean �6�. Stochastic differential
equations with Poisson white noise �PWN� have been used in
a broad range of applications to describe the motion of par-
ticles in spatially periodic potential �7�, find the response of
nonlinear dynamic systems to PWN �8,9�, and assess the
stability of the solution of stochastic differential equations
with multiplicative PWN via Lyapunov exponents �10�.

The development of algorithms for solving stochastic dif-
ferential equations with GWN is rather straightforward. Even
recurrence formulas derived from the Euler forward scheme
are satisfactory provided the integration time step is suffi-
ciently small. Superior integration schemes can be found in
�11�. Most Monte Carlo algorithms for solving stochastic dif-
ferential equations with GWN have a constant time step. In
contrast, fixed time step algorithms cannot be used directly
to integrate SDE’s with PWN since the pulses of PWN pro-
cesses arrive at random times. Variable time step algorithms
are needed to integrate SDE’s with PWN. This constraint
prevents the development of general numerical methods for
integrating SDE’s subject to, for example, Gaussian and
Poisson white noise.

There are significant theoretical studies on the conver-
gence of Euler integration schemes for stochastic differential
equations driven by PWN and/or LWN. For example, the
strong convergence and stability of these schemes has been
established in �12� for SDE’s with PWN with drift coeffi-
cients that may not satisfy global Lipschitz conditions. Theo-
rems on the accuracy of Euler integration schemes for SDE’s
driven by LWN can be found in �13,14�. However, the nu-
merical implementation of the available theoretical results is
rather limited. A notable exception is the numerical method
with fixed time step proposed in �7� to integrate SDE’s with
PWN that resembles algorithms used to integrate SDE’s
driven by GWN. The accuracy of the method proposed in
this reference has been demonstrated by numerical examples.

We present an alternative of the fixed time step method in
�7� that can be used to integrate SDE’s with both PWN and
LWN. Our specific objectives are to �1� develop a method for
integrating SDE’s with PWN that, as the method in �7�, has a
fixed time step but is derived using arguments different from
those in �7�; �2� extend the method for integrating SDE’s
with PWN to the class of SDE’s with LWN by representing a
Lévy process as a sum of a scaled Brownian motion and a
compound Poisson process; �3� prove the convergence of the
proposed numerical solution to the exact solution of stochas-
tic differential equations driven by PWN and LWN; and �4�
demonstrate the application and the accuracy of the proposed
method by numerical examples.
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II. PROBLEM DEFINITION

Let X be a real-valued stochastic process defined by the
Itô stochastic differential equation

dX�t� = ��X�t��dt + ��X�t��dY�t�, t � 0, �1�

where the driving noise Y can be a standard Brownian mo-
tion B, a compound Poisson process C, or a symmetric
�-stable Lévy motion process L�, �� �0,2�. It is common to
refer to the formal derivatives of B, C, and L� as Gaussian
�GWN�, Poisson �PWN�, and Lévy �LWN� white noise pro-
cesses. It is assumed that the drift and diffusion coefficients
� and � are such that the solution X of Eq. �1� exists and is
unique.

The processes B, C, and L� have similar and notably dif-
ferent properties. For example, B, C, and L� have stationary
independent increments but these increments follow different
distributions. The increments B�t�−B�s�, t�s, of B are
Gaussian variables with mean 0 and variance t−s. The
increments L��t�−L��s�, t�s, of L� are symmetric
�-stable random variables with characteristic functions
�L��t�−L��s��u�=exp�−�t−s��u���, u�R, so that L2�t�−L2�s� is
a Gaussian variable with mean 0 and variance 2�t−s�. The
compound Poisson process C is defined by

C�t� = �
k=1

N�t�

Yk, t � 0, �2�

where N is a homogeneous Poisson process with intensity
��0 and �Yk� are independent identically distributed �iid�
random variables. Accordingly, the characteristic function
of an increment C�t�−C�s� of C is �C�t�−C�s��u�=exp�−��t
−s�(1−�	1

�u�)�, u�R, where �Y1
denotes the characteristic

function of Y1. We also note that B has continuous samples
and so does the solution X in Eq. �1� with B in place of Y. On
the other hand, the samples of C and L� exhibit jumps that
are mapped into jumps of the solutions of Eq. �1� driven by
PWN and LWN.

The fixed time step integration method proposed in this
study is based on the representation of the driving process Y
in Eq. �1� by sequences of random walks

Yn�t� = �
k=1

�t/
tn�

Zn,k, t � 0, n = 1,2, . . . , �3�

where 
tn=� /n, �0,�� denotes an integration interval, ���
denotes the largest integer smaller than �, and �Zn,k� are in-
dependent identically distributed random variables.

Let Xn be the solution of Eq. �1� with Yn in place of Y,
that is, Xn satisfies the stochastic differential equation

dXn�t� = ��Xn�t��dt + ��Xn�t��dYn�t�, t � 0. �4�

We construct random walk sequences similar to Yn in Eq. �3�
for B, C, and L�, and show that the resulting sequences con-
verge weakly to B, C, and L� as 
tn→0. The weak conver-
gence of Yn to Y, denoted by Yn⇒Y, is used to prove the
weak convergence Xn⇒X of the sequence of approximate
solutions Xn of Eq. �1� to the exact solution X of this equa-

tion as 
tn→0. The property Xn⇒X allows us to approxi-
mate not only statistics of X at an arbitrary time t, that is,
statistics of random variable X�t�, from samples of Xn�t� but
also distributions of functionals of X, for example,
max0
t
��X�t��, from samples of Xn provided the time step

tn is sufficiently small.

The integral version of Eq. �4� in a time interval �tk−1 , tk�
is

Xn�tk� = Xn�tk−1� + 	
tk−1

tk

��Xn�s��ds + ��Xn�tk−1��Zn,k−1,

k = 1,2, . . . , �5�

which yields the recurrence formula

Xn,k = Xn,k−1 + ��Xn,k−1�
tn + ��Xn,k−1�Zn,k−1, k = 1,2, . . . ,

�6�

where Xn,k is an approximation of Xn�tk�, tk=k
tn,
k=1, . . . ,n, and t0=0.

III. RANDOM WALK MODELS AND RECURRENCE
FORMULAS

We define sequences of random walk models for B, C,
and L� corresponding to time steps 
tn=� /n similar to the
model Yn of Y in Eq. �3�, where �0,�� denotes an integration
time interval. The random walk models of B, C, and L� are
subsequently used to develop recurrence formulas of the type
in Eq. �6� for integrating SDE’s with GWN, PWN, and
LWN.

A. Random walk models

Let

Bn�t� = �
tn�1/2 �
k=1

�t/
tn�

Gk, t � 0, �7�

be a sequence of random walks with time step 
tn approxi-
mating the Brownian motion B, where �Gk� are independent
standard Gaussian variables. We note that Bn�t� is a
Gaussian random variable with mean 0 and variance

tn�t /
tn�= t�t /
tn� / �t /
tn� converging to t as n→�, so that
the random variables Bn�t� and B�t� have the same distribu-
tion as n→� or, equivalently, 
tn→0.

Consider the compound Poisson process C in Eq. �2�, and
let

Cn�t� = �
k=1

�t/
tn�

Vn,k, t � 0, �8�

be a sequence of random walks approximating C, where
Cn�0�=0, �k=1

0 Vn,k=0 by convention, and
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Vn,k = 
an independent copy of Y1, probability pn = 1 − e−�
tn

0, probability 1 − pn.
� �9�

are iid random variables. The mean and variance of
Cn�t� are equal to �t /
tn�E�Vn,1�= �t /
tn�pnE�Y1� and
�t /
tn�Var�Vn,1�= �t /
tn�pnVar�Vn,1� and converge to
�tE�Y1� and �tE�Y1

2� as 
tn→0, so that the random variables
Cn�t� and C�t� have the same mean and variance as 
tn→0.
We note that the representation in Eqs. �8� and �9� is valid
asymptotically as 
tn→0 and is numerically accurate for
pn�1, or equivalently, �
tn�1, as illustrate by a numerical
example presented in a subsequent section.

We construct two distinct random walk sequences ap-
proximating the �-stable process L�. The first sequence is
similar to that in Eq. �7�, and is defined by

L�,n�t� = �
tn�1/� �
k=1

�t/
tn�

Sk, t � 0, �10�

where �Sk� are iid symmetric �-stable random variables with
characteristic function �S1

�u�=exp�−�u���, u�R. If �=2, the
random variables �Sk� are Gaussian with mean 0 and vari-
ance 2.

The second random walk sequence approximating L� is
based on the approximate representation

L��t� � L��,a��t� = 	��,a�B�t� + C��,a��t� , �11�

of this process developed in �15�, which states that any
�-stable process can be viewed as a sum of two independent
processes, a scaled Brownian motion and a compound Pois-
son process C��,a�, where a�0 is arbitrary. The scale of the
Brownian motion is given by

	��,a�2 = 	
−a

a

y2�L�dy� =
�

2 − �
c�a2−�. �12�

The Poisson component of L� is the compound Poisson pro-
cess

C��,a��t� = �
k=1

N��,a��t�

Yk
��,a�, �13�

where N��,a� is a Poisson counting process with intensity
���,a�=c� /a�,

c� = 
 1 − �

��2 − ��cos���/2�
, if � � 1

2/� if � = 1,
� �14�

and �Yk
��,a�� are independent identically distributed random

variables ��16�, Property 1.2.15�. The random variables
�Yk

��,a�� correspond to the jumps of L��t� with magnitude ex-
ceeding a, referred to as the large jumps of L�. The distribu-
tion, the density, and the characteristic functions of Y1

��,a� are
�17�

Fa�y� =
�a�

2
� 1

��y��
1�y � − a� +

1

�a�1�y � − a�

+
1 − �a/y��

�a� 1�y � a��, y � R , �15�

fa�y� =
�a�

2
��y�−��+1�1�y � − a� + y−��+1�1�y � a��, y � R ,

�16�

and

�a�u� = �a�	
a

�

cos�uy�y−��+1�dy, u � R , �17�

respectively. The accuracy of the approximation L��t�
�L��,a��t� in Eq. �11� is remarkable �17�, so that we will not
distinguish between these two processes. Accordingly, the
second random walk model of L� is constructed for L��,a� in
Eq. �11� rather than L� and is

Ln
��,a��t� = 	��,a�Bn�t� + Cn

��,a��t�, t � 0, �18�

where Bn is given by Eq. �7�, the scale 	�� ,a� is in Eq. �12�,

Cn
��,a��t� = �

k=1

�t/
tn�

Vn,k
��,a�, t � 0, �19�

and �Vn,k
��,a�� are independent random variables given by Eq.

�9� with Y1
��,a� and ���,a� in place of Y1 and �, respectively.

We also note that the scale 	�� ,a� of the Brownian compo-
nent and the intensity ���,a� of the jumps of the compound
Poisson component of the Lévy white noise increase and
decrease with a, respectively. Accordingly, we can select a
value of a such that ���,a�
tn be sufficiently small for the
representation of Cn

��,a� in Eq. �19� to hold.

B. Recurrence formulas

The approximate solution Xn of X in Eq. �1� satisfies the
stochastic integral equation given by Eq. �5� with

NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL… PHYSICAL REVIEW E 80, 026704 �2009�

026704-3



Zn,k−1 = 

�
tn�1/2Gk−1, for GWN

Vn,k−1, for PWN

�
tn�1/�Sk−1, for LWN�first representation�
�
tn�1/2	��,a�Gk−1 + Vn,k−1

��,a� , for LWN�second representation� ,
� �20�

corresponding to the random walk models in Eqs. �7�–�14�.
One of our objectives is to show that Xn converges weakly to
the solution X of Eq. �1� as the time step 
tn of the random
walks approximating the driving processes B, C, or L� de-
creases to 0. As previously stated, this convergence guaran-
tees that statistics of X and functionals of this process can be
estimated from samples of Xn for a sufficiently small time
step 
tn.

The recurrence formula in Eq. �6� with Zn,k−1 in Eq. �20�
can be used to generate samples of Xn,k driven by GWN,
PWN, or LWN. For example, this formula is

Xn,k = Xn,k−1 + ��Xn,k−1�
tn + ��Xn,k−1�

���
tn�1/2	��,a�Gk−1 + Vn,k−1
��,a� �, k = 1,2, . . . ,

�21�

for the case of Lévy white noise described by the random
walk model in Eq. �18�. We note that �i� the proposed algo-
rithms for integrating Eq. �1� have the same structure irre-
spective of the noise type, �ii� the method for integrating Eq.
�1� with LWN described by its model in Eq. �18� results from
the integration schemes of this equation driven by GWN and
PWN processes, and �iii� both random walk models of L�

can be used to integrate Eq. �1� with LWN. The random walk
model of L� in Eq. �10� has been used extensively in appli-
cations with good results ��18–20� Sec. 4.8�.

We prefer the representation of L� in Eq. �18� since the
integration time step 
tn can be selected simply from the
condition ���,a�
tn�1 and classical requirements for SDE’s
driven by GWN. In contrast, the selection of 
tn for the
random walk model in Eq. �10� is rather difficult since the
intensity of the small Lévy processes is unbounded. More-
over, the model in Eq. �10� requires to generate samples of
heavy tail distributions at each time step rather than at every
1 / ����,a�
tn� time step on average, and the generation of
samples from these distributions can encounter numerical
difficulties. For example, samples of a standard �-stable ran-
dom variable with �=1, that is, a Cauchy variable, can be
generated from tan�U�, where U is uniformly distributed in
the range �−� /2,� /2�. To avoid numerical difficulties, we

need to generate samples from tan�Ũ� rather than tan�U�,
where Ũ is uniformly distributed in �−� /2+� ,� /2−�� and
��0 is small. The selection of an adequate value for ��0 is
not trivial, and may require iterations.

IV. CONVERGENCE OF APPROXIMATE SOLUTIONS

We show that the random walk sequences Bn, Cn, and
Ln

��,a� converge weakly to B, C, and L��,a� as n→� or,

equivalently, 
tn→0, and denote these properties by Bn⇒B,
Cn⇒C, and Ln

��,a�⇒L��,a�. The convergence of these se-
quences of processes is used to show that the solutions Xn of
Eq. �4� converges weakly to the solution X of Eq. �1�. As
previously stated, the weak convergence Xn⇒X allows us
to approximate not only marginal statistics of X, for example,
the marginal distribution this process as in �7�, but also dis-
tributions of functionals of X, for example, the distribution
of max0
t
� X�t� or �0

�h�X�t��dt for measurable functions
h :R→R, from samples of Xn for a sufficiently large n. The
mean square convergence of the sequence of random vari-
ables Xn��� to X��� as n→� does not guarantee that statistics
of functionals of X can be approximated by statistics of cor-
responding functionals of Xn.

Consider first the convergence of the driving noise pro-
cesses. Since Bn is a Gaussian sequence and has stationary
independent, it has the same finite dimensional distributions
as B asymptotically as n→�. The weak convergence Bn⇒B
results from �21� �Corollary 1 to Theorem 5.1�.

We only summarize the main steps of a proof of the weak
convergence of Cn to C, and provide some technicalities of
the proof in the Appendix. The characteristic function of
Cn�t� is

�n�u;t� = E�eiuCn�t�� = �Vn,1
�u�m

= ��1 − e−�
tn��Y1
�u� + e−�
tn�m �22�

by properties of �Vn,k�, where m= �t /
tn�, �Vn,1
denotes

the characteristic function of Vn,1, and �Y1
is the

characteristic function of Y1. For �
tn�1 with the notation
�=���Y1

�u�−1�, we have �n�u ; t�= �1+�
tn+O�
tn�2�m so
that

lim
n→�

�n�u;t� = exp�− �t�1 − �Y1
�u��� = E�eiuC�t�� = ��u;t� .

�23�

This result show that Cn and C have the same marginal dis-
tributions asymptotically as n→�, and implies the conver-
gence of the finite dimensional distributions of Cn to those of
C since these processes have stationary independent incre-
ments ��2�, Sec. 3.6.4�. The weak convergence Cn⇒C fol-
lows from these properties of Cn and technical arguments
presented in the Appendix.

The weak convergence Ln
��,a�⇒L��,a� follows from the

above properties of Bn and Cn. We have seen that the se-
quence of random walk processes Cn defined by Eq. �8� con-
verges weakly to C in Eq. �2�. This implies the weak con-
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vergence Cn
��,a�⇒C��,a� for any a�0. The weak convergence

	�� ,a�Bn⇒	�� ,a�B is implied by Bn⇒B discussed previ-
ously.

Consider now the convergence Xn⇒X. The processes X
and Xn are defined by the stochastic integral equations

X�t� = 	
0

t

��X�s��dY��s�

Xn�t� = 	
0

t

��Xn�s��dYn
��s� �24�

for zero initial state, where ��X�t�� and ��Xn�t�� are �2,2�
diagonal matrices with nonzero entries ��X�t��; ��X�t�� and
��Xn�t��; ��Xn�t��, and Y��t� and Yn

��t� are two-dimensional
column vectors with the first coordinates the identity func-
tion i�t�= t and the second coordinates B�t� and Bn�t�, C�t�
and Cn�t�, L��t� and L�,n�t�, or L��,a��t� and Ln

��,a��t�, respec-
tively, depending on the noise type. The assumption of zero
initial state is not restrictive since X�0�=Xn�0�.

The essentials steps of the proof that Xn converges weakly
to X are in the Appendix. We only mention here that the
sequence of processes Yn

� converges weakly to Y� since these
processes have the same first coordinate and the second co-
ordinate of Yn

� converges weakly to that Y�. The convergence
Yn

�⇒Y� and technical arguments in �22� are used in the Ap-
pendix to prove the convergence Xn⇒X.

V. NUMERICAL EXAMPLES

We apply the proposed numerical methods to integrate
stochastic differential equations driven by PWN and LWN.
The first example is a SDE with PWN taken from �7�. The
second example is a SDE driven by LWN. Analytical solu-
tions are available for the stationary distribution of X in both
examples, and these solutions are used to assess the accuracy
of the integration algorithms proposed in this study.

A. Poisson white noise

Consider Eq. �1� with ��x�=−v��x� for x� �−L /2,L /2�,
��x�=1, and Y =C, where v�x�= �x� implying ��x�=−sgn�x�.
Since the diffusion coefficient does not depend on X, we say
that the driving noise is additive. As in �7�, we use
periodic boundary conditions that are defined as follows
for the discrete approximation �Xn,k� of the state X of Eq. �1�.
Let Xn,k��� be a sample of Xn,k and suppose that
Xn,k−1���� �−L /2,L /2�. If Xn,k���� �−L /2,L /2�, then
Xn,k��� is mapped into Xn,k���=−sgn�L /2−���L /2−��,
where �=�0− ��0 /L�L and �0= �Xn,k����−L /2. For example, if
Xn,k���=5L /8, then �0=L /8 and �=�0=L /8 so that we set
Xn,k���=−sgn�L /2−L /8��L /2−L /8�=−3L /8. These peri-
odic boundary conditions assure that the samples of Xn,k are
in the range �−L /2,L /2� at all times.

Numerical results have been obtained for a compensated
compound Poisson process with exponential jumps, that is,
C�t� in Eq. �1� is replaced by C�t�−E�C�t��=C�t�−�tE�Y1�.
As in �7�, the jumps of C�t� are exponential random variable

with decay parameter ��0 and mean E�Y1�=1 /�. The cor-
responding version of the recurrence formula in Eq. �6� is

Xn,k = Xn,k−1 − sgn�Xn,k−1�
tn + Vn,k−1 − �E�Y1�
tn.

�25�

The noise strength is denoted by D=� Var�Y1�=� /�2 and is
set equal to 1 in all numerical examples. As in �7�, numerical
results have been obtained for �=0.5, 1, 2, and 100 yielding
�=1 /��=1 /�0.5=1.4142, 1.0, 0.7071, and 0.1. Hence, the
driving noise has large and rare jumps for small values of �
and small and frequent jumps for large values of �.

Figure 1 shows histograms of the stationary state Xn,k
based on 105 independent samples of this process generated
in a time interval �0,��, �=10, with a time step 
tn=0.01
corresponding to a partition of �0,�� in n=1000 equal inter-
vals for �=0.5, 1, and 2. The time step had to be decreased
to 
tn=0.0001 for �=100 to obtain accurate results, in
agreement with previous comments related to the represen-
tation in Eqs. �8� and �9�. The plots in Fig. 1 match the
histograms and the analytical results in �7�. We note that the
recurrence formula used in this reference to integrate Eq. �1�
results from the integral form,

X�tk� = X�tk−1� + 	
tk−1

tk

��X�s��ds + 	
tk−1

tk

��X�s��dC�s� ,

�26�

of this equation for an interval �tk−1 , tk� and the approxima-
tions �tk−1

tk ��X�s��ds���X�tk−1��
tn and �tk−1

tk ��X�s��dC�s�
���X�tk−1��
Ck−1=��X�tk−1���C�tk�−C�tk−1��, and has the
expression

X̃k = X̃k−1 + ��X̃k−1�
t + ��X̃k−1�
Ck−1, �27�

where X̃k is an approximation of X�tk�, 
t= tk− tk−1, and

Ck−1=�tk−1

tk dC�s�. The equality in Eq. �27� resembles the
classical recurrence formula for generating samples of the
solutions of SDE’s with GWN �7�. In addition to numerical
experiments, bounds are given in �7� on the mean square

error of the approximate solution X̃ at time t=�. We note that
it is not possible to conclude that functionals of X can be

estimated from samples of X̃ based solely on mean square

error of X̃���. This conclusion holds if X̃ converges weakly to
X.

The weak convergence of the sequence of processes Xn in
Eq. �4� to X in Eq. �1� guarantees the convergence of distri-
butions of functionals of Xn to those of corresponding func-
tionals of X. A numerical illustration of this convergence is
provided by the following example. Suppose X is a filtered
Poisson process, that is, it is the solution of Eq. �1� with
��X�t��=−�X�t�, ��0, and ��X�t��=1, and that our objec-
tive is to find the distribution of the random variable
max�1
t��2

�X�t��, 0
�1��2. Let Tk be the jump times of C
in Eq. �2� and denote by X�Tk� the value of X immediately
following the kth jump of C. We have
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X�Tk� = X�Tk−1�e−��Tk−Tk−1� + Yk, k = 1,2, . . . , �28�

and maxt���1,�2��X�t��=maxTk���1,�2��X�Tk�� almost surely �a.s�
by properties of filtered Poisson processes. The recurrence
formula in Eq. �28� can be used to generate samples X�Tk�,
calculate the corresponding samples of maxTk���1,�2��X�Tk��,
and construct histograms of this random variables. Alterna-
tively, the fixed time step recurrence formula in Eq. �4� can

be used to generate samples of Xn,k, calculate the correspond-
ing samples of maxtk���1,�2��Xn,k�, and construct histograms of
this variable. The numerical results in Fig. 2 are for �1=10,
�2=20, �=�=1, and Gaussian jumps Yk with mean 0 and
variance E�Y1

2�=2� /�, so that X in the stationary regime has
mean 0 and variance 1. The histograms of maxtk���1,�2��Xn,k�
and maxTk���1,�2��X�Tk�� are shown in the left and the right
panels in Fig. 2, and are based on 10 000 independent
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FIG. 1. Histogram of stationary state Xn,k for �a� �=0.5, �b� �=1, �c� �=2, and �d� �=100.
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FIG. 2. Histograms of �a� maxtk���1,�2��Xn,k� and �b� maxTk���1,�2��X�Tk��.
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samples of these processes. Since there is no analytical
solution for the distribution of maxt���1,�2��X�t��
=maxTk���1,�2��X�Tk��, the histogram of maxTk���1,�2��X�Tk�� is
taken as reference for assessing the accuracy of the fixed
time step recurrence formula. The similarity of the results in
the two panels of Fig. 2 demonstrate the accuracy of the
fixed time step method even when used to characterize func-
tionals of the solution of stochastic differential equations
driven by Poisson white noise.

B. Lévy white noise

Consider the special case of Eq. �1� with
��X�t��=−X�t�3 and ��X�t��=1 and Y =L�. This equation has
a strong unique solution X�t� that becomes stationary as time
increases indefinitely �17�. The characteristic function
��u�=E�exp�iuX�t��� of X�t� in the stationary regime satis-
fies the ordinary differential equation u���u�− �u����u�=0
accompanied by the boundary conditions ��0�=1 and
���0�=0 and the requirement ���u��
1, u�R. The solution
of this equation for �=1 is

��u� = e−�u�/2�cos��3u/2� + sin��3�u�/2�/�3�, u � R ,

�29�

so that the stationary marginal density of X�t� has the expres-
sion

f�x� =
1

��a1
2 + 1/4��a2

2 + 1/4�
, x � R , �30�

where a1=x+�3 /2 and a2=−x+�3 /2 �17�.
We generate samples of X by the recurrence formula in

Eq. �4� in a time interval �0,�� sufficiently long for the pro-
cess to reach stationarity, use samples of Xn��� to construct a
histogram of the stationary state, and compare the resulting
histogram with the stationary density f�x� in Eq. �30�. The
application of the recurrence formula in Eq. �4� requires to
select a threshold a�0, a shape parameter �, and calculate
the properties of the Gaussian and the Poisson components
of the driving noise. For �=1, the scale of the Gaussian
noise is 	�1,a�=�2� /a by Eqs. �14� and �12�. The com-
pound Poisson process C�1,a� in Eq. �13� is defined by the
Poisson counting process N�1,a� with intensity ��1,a�=2 / ��a�
and jumps Yk

�1,a� following the distribution

Fa�y� =
a

2
� 1

�y�
1�y � − a� +

1

a
1�y � − a�

+
1 − a/y

a
1�y � a��, y � R . �31�

The resulting integration formula is

Xn,k = Xn,k−1 − Xn,k−1
3 
tn +�2�

a

tn

1/2Gk−1 + Vn,k−1
�1,a� ,

k = 1,2, . . . , �32�

where �Gk−1� are independent standard Gaussian variables
and �Vn,k−1

�1,a� � are independent identically distributed random
variables that have the distribution Fa in Eq. �31� with prob-

ability pn,�,a=1−exp�−���,a�
tn� and are equal to 0 with
probability 1− pn,�,a.

Numerical results in the following figures are for �=5,

tn=0.0001, and �=1. Figure 3 shows the distribution func-
tion in Eq. �31� in the range �−10,10�, that is, the distribution
of the jumps of the Poisson component of L�. The plot sug-
gests that F1 has heavy tails. Figure 4 shows a sample of X
generated by the recurrence formula in Eq. �32�. The sample
exhibits jumps that are caused by the jumps of the Poisson
component C��,a� of the Lévy noise L�. The jumps of X are
spaced in time at 1 /��1,a�=�a /2 on average. The sample
varies continuously between jumps since only the Brownian
component 	�� ,a�B of L� is active during the time between
consecutive jumps of C��,a�.

Figure 5 shows histograms of X��� constructed from
100 000 independent samples of Xn,k at time �=5 that have
been generated by the recurrence formula in Eq. �32� with
time step 
tn=0.0001 for two thresholds: �a� a=0.5 �left

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

D
is

tr
ib

ut
io

n
F

1
(y

)

FIG. 3. �Color online� Distribution F1 in Eq. �31� for �=1 and
a=1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

time, t

A
sa

m
pl

e
of

X
(t

)

FIG. 4. �Color online� A sample of X�t� generated by Eq.
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panel� and �b� a=1.0 �right panel�. The continuous line in the
figure is the stationary density of X given by Eq. �30�. The
histogram of Xn,k traces closely the density in Eq. �30� for
both values of a. We also note that, as for SDE’s with PWN-
,statistics of functionals of X can be calculated approximately
from samples of Xn since Xn converges weakly to X.

VI. CONCLUSIONS

A fixed time step method has been developed for integrat-
ing stochastic differential equations driven by Poisson white
noise �PWN� and Lévy white noise �LWN�. The method is
similar to that proposed in �7� for integrating stochastic dif-
ferential equations with PWN but has been developed using
different arguments. We have interpreted PWN as the formal
derivative of a compound Poisson process C while LWN has
been viewed as the formal derivative of an �-stable Lévy
process L�. Fixed time step algorithms for integrating sto-
chastic differential equations �SDE’s� with PWN have been
obtained from approximations of C by random walks. The
construction of fixed time step integration algorithms for
SDE’s with LWN was based on the integration scheme de-
veloped for SDE’s with PWN and a representation of L� by
a sum of a scaled Brownian motion and a compound Poisson
process.

Numerical experiments were used to demonstrate the
implementation and the accuracy of the proposed integration
algorithms for SDE’s with PWN and LWN. Moreover, it was
shown that the sequence of approximating solutions of a
SDE corresponding to refining approximations of PWN and
LWN converges weakly to the exact solutions of these equa-
tions. This convergence implies that marginal statistics as
well as distributions of functionals of the exact solution of a
SDE can be estimated from samples of approximate solu-
tions of this equation delivered by the integration algorithms
in this study.

APPENDIX

The weak convergence of both Cn and Xn to C and X,
respectively, needs to be studied in the space D�0,�� of real-
valued functions that are right continuous and have left limits
since the samples of these processes have jumps.

Convergence Cn⇒C. We have seen that the finite dimen-
sional distributions of Cn converge to those of C. To prove
the weak convergence of Cn to C, we need to show that the
sequence of processes �Cn� is tight. According to a result in
�21� �Theorem 15.2�, �Cn� is tight if the following two con-
ditions are satisfied.

First, we need to show that for every ��0, there exists a
threshold a�0 such that P�sup0
t
��Cn�t���a�
� for all
n�1. We only show that this condition is satisfied for the
special case in which the jumps �Yk� of C have a symmetric
distribution. In this case, we have

P� sup
0
t
�

�Cn�t�� � a� 
 P� sup
0
t
�

Cn�t� � a�

+ P� inf
0
t
�

Cn�t� � − a�

= 2P� sup
0
t
�

Cn�t� � a� �A1�

and

P�Cn��� � a� = P�Cn��� � a�Tn�a� 
 ��P�Tn�a� 
 ��



1

2
P�Tn�a� 
 �� �A2�

for Tn�a�=inf�t :Cn�t��a�, where the latter inequality fol-
lows from the symmetry of the marginal distribution of
Cn�t�. Since

P�Tn�a� 
 �� = P� sup
0
t
�

Cn�t� � a� = 2P�Cn��� � a� ,

�A3�

we have P�sup0
t
��Cn�t���a�
4P�Cn����a�

4E�Cn���2� /a2 using also the Chebyshev inequality
P�Cn����a�
E�Cn���2� /a2. Accordingly, the required
condition is satisfied, if we set a= �4E�Cn���2� /��1/2 for any
��0.

Second, we need to show that for each ��0 and
��0, there exists �� �0,1� and an integer n0 such
that P�Wn�������
� for n�n0, where
Wn����=inf�si�

max0�i
r Wn�ti−1 , ti�, 0
 t0� t1� ¯ � tr=�
is a partition of �0,�� such that ti− ti−1��, and
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FIG. 5. �Color online� Histogram of Xn,k for �a� a=0.5 and �b� a=1.0 and the density of X�t� in Eq. �30�.
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Wn���=sup��Cn�s��−Cn�s��� :s� ,s�� �t , t+���. Since
Wn����
max1
k
n�Vn,k� for any �� �0,1�, we have

P�Wn�������
 P�max1
k
n�Vn,k����. Let F̄ denote the dis-
tribution of �Y1�. We have

P� max
1
k
n

�Vn,k� 
 �� = P��Vn,1� 
 ��n � e−���1 + �
tnF̄����n

�A4�

so that P�Wn�������
 P�max1
k
n�Vn,k����

1−e−���1+��F̄��� /n�n. Since this upper bound on
P�Wn������� is a decreasing function of n, we can find an n0
such that P�Wn�������
� for n�n0. In summary, both con-
ditions of the theorem are satisfied, so that Cn converges
weakly to C.

Convergence Xn⇒X. We use a result in �22� �Theorem
5.4� to prove this convergence, which considers the sequence
of process

Cn
��t� = Cn�t� − �

0�s
t

h���
Cn�s���
Cn�s�

= �
0�s
t

�1 − h���
Cn�s����
Cn�s� , �A5�

where h��r�= �1−� /r�1�r��� for � ,r�0. Note that
�1−h��r��r
2� so that Cn

� is bounded over any bounded
time interval irrespective of the properties of the jumps of C.

Theorem 5.4 in �22� holds under two conditions. The first
condition is that Yn converges weakly to Y. This condition is
satisfied since the first coordinate of Yn and Y is the identity
function and the convergence Cn⇒C holds. The second con-
dition requires that, for each ��0, there exists a sequence of
stopping times �Tn� such that P�Tn
��
1 /� and
supn E��Cn

��t∧Tn�����, where �Cn
��t∧Tn�� denotes the qua-

dratic variation of Cn
��t∧Tn�. The sequence of stopping times

Tn=inf�t�0:�k=1
�t/
tn�Vn,k

2 �a� for a�0 has the required prop-
erty since

P�Tn 
 t� = P� �
k=1

�t/
tn�

Vn,k
2 � a�



E��k=1

�t/
tn�Vn,k
2 �

a



�tE�Y1
2�

a
, �A6�

or P�Tn
��
1 /� for t=� and a=��2E�Y1
2�. We also have

E��Cn
��t∧Tn���
E��Cn

��t���
E��k=1
�t/
tn�Vn,k

2 ���.
Since the two conditions of Theorem 5.4 in �22� are sat-

isfied, we conclude that the limit of Xn as n→�, that is, the
process limn→� Xn satisfies the first equality in Eq. �24�.
Since the solution of this equation exists and is unique in our
case, we conclude that Xn converges weakly to X. Accord-
ingly, statistics of functionals of X can be approximated by
those those of functionals of Xn.
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